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This paper is concerned with the jet of liquid, open to the atmosphere, that 
emerges from a two-dimensional channel in which there is Poiseuille flow far 
upstream, the flow being driven by an applied pressure gradient. The problem 
is discussed with the aid of the method of matched asymptotic expansions; the 
small parameter involved is the inverse Reynolds number. A boundary layer 
forms adjacent to the free surface, and a classical boundary-layer analysis is 
applied to find the flow there (for moderate distances downstream); the influence 
of this boundary layer on the flow in the core of the jet is then investigated. 
Higher-order boundary-layer effects, such as indeterminacy and eigensolutions, 
are also discussed. The first few terms are found of an asymptotic expansion for 
the equation of the free surface, and considerations of momentum balance are 
applied to find the asymptotic contraction ratio of the jet. 

~~ ~ ~~ ~~ 

1. Introduction 
Consider the two-dimensional flow of an incompressible liquid along a channel, 

which we take to be semi-infinite (figure 1) .  The Reynolds number (based on the 
channel width) is large. We assume that the flow has the basic Poiseuille profile 
to lowest order, and consider how this is modified when the fluid leaves the end 
of the channel in the form of a jet. More interesting physically is the case of an 
axisymmetric jet leaving a circular pipe; this can be studied by methods similar 
to those described here, and it is hoped to publish the details elsewhere. 

When the fluid detaches itself from the wall of the channel, the removal of the 
wall stress causes a boundary layer to form at the free surface; in this layer the 
parabolic velocity profile adjusts itself so as to satisfy the condition of zero stress 
at the free surface (surface tension is ignored). In the case of an inviscid liquid, 
this condition would not be imposed, and all the conditions of the problem would 
be satisfied by postulating that the parabolic profile continues unchanged in the 
jet region. However, no uniqueness theorem exists for this inviscid problem, 
and it is conceivable that other solutions might exist; nevertheless, it is assumed 
in this paper that Poiseuille flow everywhere is the proper inviscid limit. With 
this assumption, the flow in the interior of the jet is unaffected to lowest order, 
though the boundary layer can be expected to induce perturbations to it, and 
also to the flow upstream in the channel. 

We attack the problem in a systematic manner by using the now standard 
method of matched asymptotic expansions, described by Van Dyke (1964). 
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The solution is developed in powers of E, where e3 is an inverse Reynolds number, 
both in the 'inner' (boundary-layer) region and in the 'outer' region of the core; 
the two expansions are matched by standard procedures. 

Goren (1966) considered the development of such a boundary layer when the 
basic flow is a simple shear flow and the flow field of infinite extent across the 
stream. He found that the boundary-layer thickness and the displacement of 
the free surface grow as the cube root of the downstream distance. We confirm 
Goren's solution as a first approximation for our boundary layer (to within the 
2% accuracy of his computations), find higher-order terms, and consider the 
perturbed flow in the core. 

The main difficulty is that the boundary layer may interact with the main 
flow, in the sense that it may induce a pressure gradient there, and this effect 
depends crucially on the shape of the free surface, which is unknown a t  the outset. 
Goren assumed that there was no such interaction, so that in his solution modifica- 
tions to the basic profile are confined to the boundary layer; the shape of the free 
surface is then found from the condition that the gain of volumetric flow rate 
in the boundary layer due to the speeding-up of the fluid there is balanced only 
by the loss due to the contraction of the jet, and not by any modification of the 
basic profile away from the boundary layers. We do not make this assumption, 
but find that, for matching to be possible, the fist- and second-order perturba- 
tions to the main flow must vanish identically; and this justifies Goren's assump- 
tion, to second order. We can then deduce the equation of the free surface, again 
from the matching. 

It should be made clear that the boundary-layer solution derived here will 
break down at large distances downstream, actually when x-l = O($),  when 
the boundary-layer thickness is no longer small compared to the width of the 
channel. This breakdown is exemplified by the fact that in our solution the jet 
does not tend to any asymptotic width. Harmon (1955) obtained for a circular 
jet the asymptotic contraction ratio $312 by considering the balance of mass 
transport and momentum along the jet, taking plug flow a t  infinity and a para- 
bolic profile at the exit. This latter assumption is open to criticism; our analysis 
shows that it is valid a t  high Reynolds number, since the core flow is unaffected 
to first and second order, but otherwise it is inadequate; this conclusion is borne 
out by the experiments of Middleman & Gavis (1961). Using our solution to 
calculate the momentum flux in the jet we can, in principle, find a series expan- 
sion for the contraction ratio at high Reynolds number, the zero-order term 
being Harmon's value; we calculate the next term, and find that it vanishes. 

The flow far downstream in the jet is discussed by Goren & Wronski (1966), 
and references to other related work can be found there and in Goren (1966). 

2. The governing equations and boundary conditions 
We take the Z-axis along the lower edge of the channel, and the Z-axis across 

the channel mouth (figure 1); the tilde indicates a dimensional quantity. If a 
is the width of the channel, the stream function of the basic Poiseuille flow is 

where A is a constant. $* = A(?.- $z"3/a), (3.1) 
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We define an inverse Reynolds number el = v/Aa2, where v is the kinematic 

For convenience later a variable @ is defined by 
viscosity. This will be our small parameter in what follows. 

y” = 2 -  [(Z,€*), (2.2) 
where 2 = [(Z, ex) is the equation of the lower free streamline. 

Before setting up the equations we introduce non-dimensional quantities by 
measuring lengths with respect to a and velocities with respect to Aa; that is, 
we write Z = ax, etc., and $ = Aa2$. (2.1) now becomes 

(2.3) $ - 22-223 
0 -  3 9  

z =  1 
/””~~””’”””””’ 

4 
/ / / / 1 1 / / / / / / 1 / / / / / / 1 t l l / l  * ’ X J  z = o  2 = 5 (X, c 1 

FIGURE 1. Notation. 

and the Navier-Stokes equations for steady laminar flow are, in the new variables, 

$2$x2- $x1c.,, = -px +e* (@xxz + $222), 

- $2$xx -k $x$xz = - P, - E* ($xxx + $x22). 
(2.4) 
(2.5) 

Here P is the non-dimensional pressure (real pressure divided by pA2a2, p being 
the density). 

For x > 0 the boundary conditions to be applied on the lower free surface 
z = c(x)t are @ = 0, (2.6) 

Ginj = 0, (2.7) 
where ej are the components of the non-dimensional stress tensor and n is the 
normal to the surface. With 

(2.8) n = ( - 5’(4,1)/[5’2(x) + 114 
au, auj 

pz i=-P6i i+€* -+- , 
(ax, ax,) 

(2.7) becomes p + €* W X 2  + 5’(4  ($22 - $xx)l = 0, 
5’W p + e* W 2 Z  - $zx - 2C’W@XZ} = 0. 

The other conditions to be satisfied are 

$ = &  on z = & ,  
$ z =  0 on z =  0,1, 

$-+z2-@3 as x + - m .  

(2.9) 

(2.10) 
(2.11) 

(2.12) 
(2.13) 
(2.14) 

We consider z in the range 0 < z < $; the flow for 4 < z < 1 is obtained from 
symmetry considerations. 

t The dependence of 5 on E* will not be displayed when it is not relevant to the point 
under discussion. 

18-2 
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3. The inner expansion 
To examine the boundary-layer structure we change the scaling in the trans- 

verse direction by writing y = €7, where e = €$ (@ > 0) and a is to be determined. 
Anticipating that the displacement 6 of the free surface is of the same order of 
magnitude as the boundary-layer thickness, we write C(x, 6) = E ~ ( x ,  E )  and 
henceforth work with h. It is not necessary to assume that ~ ( x , E )  = 0 ( 1 )  as 
E-+ 0; examination of ( 3 . 2 )  below shows that the inner expansion developed in 
this section holds provided only that h = o(e-l), i.e. {tends to 0 with E .  The work 
of $5 then shows that we do indeed have h = O ( 1 ) .  

We seek a solution of these equations in the form of an 'inner expansion ' in 
E .  In order to match this to the outer Poiseuille flow, we must have $ - y2 as 
7 -> co in the inner region, to lowest order in 8, so $ must be of order €2. In  order 
to achieve a balance between the viscous terms and the inertial terms in ( 3 . 2 )  
we must therefore take cc = Q. That is, B = (v/Aa2)). 

Our inner expansion for @ begins with a term in e2; we assume until we have 
evidence to the contrary that it proceeds in powers of E ,  so that 

Similarly we expand h and P as 

The boundary conditions on the free surface 7 = 0 are, from ( 2 . 6 ) ,  ( 2 . 1 0 )  and 

$ =  0, (3.7) (2.11)> 

From (3 .3 )  and ( 3 . 8 )  we conclude a t  once that P is of order e4. To the lowest order 
in E ,  ( 3 . 2 )  then becomes 

( 3 . 1 0 )  y 2 , y 2 ; 7  - % 5 T 2 7 7  = K,,,, 
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and (3.7) and (3.9) give 
y 2  (0 0) = y,,, (t, 0) = 0. (3.11) 

To complete the system of equations for Y2 (6 ,  7) we requireonefurther boundary 
condition. This is the matching condition 

YZ(t-,?J) 7, as r+m, (3.12) 

Reverting temporarily to the dimensional variables d = ax, $ = Aa2$, etc., 
which is derived formally in Q 5. 

we have, to order e2, 
$ = Aa2c2Y2 ([, 7) 

= Aa2(v/Aa2)%Y2 (iZ/a, A$g/via*). (3.13) 

This must be matched for q+m to the term AX", N Ag2 of the outer solution; 
thus with this approximation the right-hand side of (3.13) is independent of a, 
and we conclude that 

Y2 (?/a, A*%/v*a*) = (iZ/a)2f2 ((A*%/v*u*)/(Z/a)"), 

i.e. YZ(L7) = @ f 2 ( @ >  (3.14) 

where 0 = 7/@. 8 is the similarity variable used by Goren (1966) in his solution, 
and by Goldstein (1930) in a different context. 

The equation for f2(8)  is, from (3.10), 

f"' 2 + 3  2f 2 f" 2 - 2  ? f ' 2  2 = 0, (3.15) 

and the boundary conditions are 

(3.16) 

(3.17) 

An equation essentially the same as (3.15) was investigated by Goldstein 
(1930). For large 8, the solution has asymptotically the form 

f, (0) N A, (0 + c ) ~  + Olexp ( - $A203)] ,  (3.18) 

where A,  and c are constants; this is derived in appendix A. We choose A ,  = 1 
to satisfy (3.17); the constant c and a third arbitrary constant in the exponential 
term give us enough freedom to satisfy (3.16). 

The results of numerical computation of f2 (8) are given in table 1. The value of 
c is found to be 0.70798. 

The surface speed to this order is given by 

u (x, y = 0)  = e d f ;  (0)Aa 

II 2*5572(A2viZ)*, (3.19) 

which agrees with the result obtained by Goren (1966, equation (28)) to within 
the'2 % accuracy of his calculations. 

To the next order in E ,  (3.2) becomes 
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and the boundary conditions (3.7) and (3.9) become 

y 3  (5, 0) = ~ 3 1 ,  (690) = 0. 
The matching condition from $ 5 ,  

completes the specification of Y3 ( 6 , ~ ) .  
In  terms of the dimensional variables, this second term of the inner expansion 

matches to -$AZ3/aa; thus t'he dependence on a comes in the form of a factor l/a, 
and a dimensional analysis analogous to that leading to (3.14) gives 

(3.21) 

Y 3 ( 5 , 7 ) N  -$y3 as T'Q (3.22) 

y 3  ( 5 7  7) = 5f3 (Q (3.23) 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

f 2 (0)  
0.5143 
1.0458 
1.6104 
2.2222 
2-8924 
3.6295 
4.4392 
5.3252 
6.2894 
7.3330 

f 3  (0)  
- 0.7298 
- 1.5317 
- 2.4734 
- 3.6142 
- 5.0037 
- 6.6821 
- 8.6823 
- 11.0333 
- 13.7627 
- 16.8984 

0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 

f 2 (0) 
8.4563 
9.6595 

10.9427 
12.3059 
13.7491 
15.2723 
16.8755 
18.5587 
20.3219 
22.1651 

TABLE 1. The functions f (0) and fa (8) 

f3(@ 

- 20.4700 
- 24.5078 
- 29.0433 
- 34.1082 
- 39.7343 
- 45.9538 
- 52.7985 
- 60.3005 
- 68.4918 
- 77.4044 

' /  0 

/ 
I t I 

0 2  03 04 
r 

U 

FIGURE 2. -, the boundary-layer profile a t  x = 1 with 8 = 0.1 (Reynolds number 
1000); - - - -, its asymptotic behaviour. 
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The equation and boundary conditions forf3(8) are 

(3.24) 

(3.25) 

The asymptotic solution of this equation has the form 

f , N A,  (t3 - 3) + B3t + O[exp ( - QP)] ; 

here t = 8+c  and A,, B, are arbitrary constants. We choose A,  = -$ and B, 
and a third arbitrary constant in the exponential term are at our disposal to 
fit the boundary conditions on 7 = 0. The functionf,(O) is tabulated in table 1; 
the numerical integration gives the value - 2.08913 for B,. The boundary-layer 
velocity profile to this order is illustrated in figure 2. 

f: + 8fzfjl - fL fL  +&f3 = 0, 

f 3  (0) = f; (0) = 0, 
f3(4 - - g e 3  as e+oo. 

4. The flow in the outer region 
( a )  The perturbation field 

In  the ‘outer’ region, i.e. away from the ‘inner’ boundary-layer region near 
z = 0, $ is represented by an outer expansion 

analogous to (3.4) Here $o is just the basic flow (2.3); and higher terms denote 
the perturbation of this basic flow due to its interaction with the boundary 
layer. Because the governing equations are elliptic this perturbation will extend 
also to the region x < 0 in the channel. 

$ = $o(x,z)  + 4 1 ( X , z ) + . * .  (4.1) 

For n = 1 , 2  and 3 the equations for $n(x, z )  are, from (2.4) and (2.5), 

where IIn (x, z )  denotes the nth term in the outer expansion of 

n(x,  z )  = P(x,  z )  + 463X. (4.3) 
The last term here represents the effect of the viscous terms in (2.4) and (2.5). 
Eliminating l I n  from (4.2), we obtain 

where 

We write v = -$n, and consider the following boundary-value problem in 
-co < x < co, 0 6 z < 3: 

2 v = 0 ,  
v2v-t  ~ 

$ 1 - 2 )  I 

I T I ( % , & )  = 0,  

T I ( z , ~ )  = 0 for x < 0 

= - A  for x > 0, 

TI bounded as 1x1 +a. 

(4.5) 
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These are the conditions satisfied by 
for n = 1,2 and h = 2 for n = 3. 

unique. From this i t  follows that 
sider qF3. 

ponentially small as x + - co. Then the Fourier transform 

the matching of $ 5  gives h = 0 

The construction of v(x,x) given below suggests that the solution of (4.5) is 
and $2 vanish identically; we go on to con- 

It will appear that, in the case n = 3, v(x, z )  is bounded as x-+ co and is ex- 

V(a,  z )  = v(x, z )  eiaxdx Km 
converges in the open strip 0 < I m a  < p, where p is some positive number. 
Introducing this into (4.5) we have 

V(a ,  0) = - 2ia-1, (4.7) 

V(a,*) = 0. I 
The equation for V is actually the special case c = 0 of the Rayleigh (inviscid 
Om-Sommerfeld) equation 

d 2 W  - + 2 + - J w  U ( Z )  = 0, 
dz2 U ( z )  - c 

familiar in the context of hydrodynamic stability. 
Two independent solutions of our equation can be found by the method of 

Frobenius; they can be characterized by their behaviour in the neighbourhood 
of2 = 0:  

. .  
The solution to (4.7) is then 

This has a pole a t  a = 0 with residue - 2iV, ( z ) ,  where V, ( z )  is given by 

(4.9) 

(4.10) 

(4.11) 

the solution of this can be written down explicitly :t 
(4.12) & ( z )  = l-2~-2z(l-z)ln-. 

The remaining singularities of Y(a,z)  are the zeros of ?(a:&); these are the 
points t- ip, (p, > 0 ) ,  where p: are the eigenvalues of the problem 

2 

1--z 

(4.13) 

t In the case a: = c = 0 one solution of (4.8) is clearly U ( z ) ;  a second can be found by 
standard methods. 
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the residues are multiples of the wn(x). Comparison of (4.13) with (4.11), whose 
solution is monotonic in [ O , + ] ,  shows that all the eigenvalues /3, are real. The 
first five are 5.175, 11.938, 18.393, 24.769, 31.112. The corresponding eigen- 
functions (normalized so that w; (0) = 1) are tabulated in table 2. 

z 

0.02 
0.04 
0.06 
0.08 
0.10 

0.12 
0.14 
0.16 
0.18 
0.20 

0.22 
0.24 
0.26 
0.28 
0.30 

0.32 
0.34 
0.36 
0.38 
0.40 

0.42 
0.44 
0.46 
0.48 
0.50 

W I ( 4  

0.01956 
0.03811 
0.0 5 5 4 5 
0.07 140 
0.08581 

0.09853 
0.10945 
0.11847 
0.12552 
0.13054 

0.13351 
0.13444 
0.13333 
0.13024 
0.12524 

0.11842 
0.10990 
0.09982 
0.08831 
0.07557 

0-06176 
0.04709 
0.03176 
0.01599 
0~00000 

wz (2) w3 (4 w4 (2) 

0.01941 0.01916 0.01880 
0.03693 0.03497 0.03233 
0.05157 0.04538 0.03742 
0.06256 0.04908 0.03299 
0.06931 0.04568 0.02028 

0.07152 0.03576 0.00251 
0.06913 0.02080 - 0.01588 
0.06236 0.00291 - 0.03036 
0.05168 - 0.01539 - 0.03736 
0.03779 -0.03155 - 0.03518 

0.02157 - 0.04333 - 0.02438 
- 0.00760 0.00402 - 0.04912 

- 0.01377 - 0.04812 0.01103 
- 0.03073 - 0.04049 0.02697 
- 0.04582 - 0.02728 0.03633 

- 0.05814 -0.01032 0.03681 
- 0.06695 0.00805 0.02832 
- 0.07173 0.02532 0.01292 
- 0'07219 0.03912 - 0.00563 
- 0.06830 0.04756 - 0.02281 

- 0'06032 0.04947 - 0.03443 
- 0.04872 0.04461 - 0'03766 
- 0.03420 0.03363 -0.03172 
-0.01763 0.01805 - 0.01806 

0~00000 0~00000 0~00000 

TABLE 2. The first five eigenfunctions uj, (2) 

w5 (4 
0.01835 
0.02910 
0-02835 
0.01658 

- 0.00158 

-0.01914 
- 0.02939 
- 0.02844 
- 0.01667 

0.00143 

0.01899 
0.02935 
0.02859 
0.01700 

- 0.00103 

- 0.01867 
- 0.02924 
- 0.02876 
- 0.01740 

0.00053 

0.01827 
0.02910 
0.02894 
0.01784 
0~00000 

We can now obtain v(x, z )  from the inversion integral 

v(x ,x )  = - V(a,  z )  e-iffzda, (4.14) 

where 0 < p* < p; p may be identified with PI. For x > 0 the contour ofintegra- 
tion is completed in the lower half-plane, and we obtain 

m 

n= 1 
~ ( x ,  z )  = - 2& (2) + Ane-Bnzw, ( z ) ,  (4.15) 

where the A ,  are constants; actually 

1:: 2i 
A ,  = - s( - ip,, 4) - ( - ipn, 4). P, 

(4.16) 
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In  the case x < 0, the result is 
W 

v(x, z )  = - z A ,  epnxwn(z). 
n= 1 

(4.17) 

The A ,  are best found from the condition that v and &lax be continuous a t  
x = 0;  this gives 

so that the A ,  are 

OD 

(4.18) 

the Fourier coefficients in the expansion of V, ( x ) , ?  whence 

(4.19) 

The first five are - 12.94, - 9.58, - 8.92, - 8.64, - 8.49. 
We can also obtain an expression for the pressure in the outer region. From 

(44, 
p3, (x, 2) = 2(x - z2)$3zz 

m 

n = l  
= 2(x - z2 )  C A,,8,e-Pnxw,(z) 

= - 2 z -, c-Pna((x - z2))uC ( x )  + 210, ( z ) } ,  (4.20) 

for x > 0,  where (4.13) has been used. Integrating the first term on the right of 
(4.20) by parts, we obtain 

“ A  
n=IPn 

(4.21) 
“ A  

P3 (x, z )  = - 2 z 2 e-Pnz{(z - 22) w;, (2) - (1 - 22) w, ( z ) } ,  
n = l  Pn 

where the condition 
p3 ( X , O )  = 0, (4.22) 

required for matching to the inner solution, has been used. 
For x < 0 the corresponding expressions are 

p3,- (z, z )  = - 2 (4.23) 

P3 (x, 0) = - 4x, (4.24) 

P3 (z, x) = - 4x - 2 1 -n ePnz{(z  - z2)  w; ( z )  - ( 1  - 2z )  w, ( z ) } .  (4.25) 

To obtain (4.24), consider the form taken by the first equation in (4.2) when 
z = 0 and x < 0; this reduces to 

6 ePnZ ((2 - z2) u~ ( z )  + 2w, (.)I. 
n = l  Pn 

“ A  
?*==1 P, 

r13x(x,z) = P3s(z ,z )+4  = 0. (4.26) 

The resulting constant of integration vanishes since, from (4.22), P3(0, 0) = 0. 
The pressure distribution along the line of symmetry x = 4 is shown in figure 3. 

t That the spectrum of (4.13) is discrete is ensured by an argument analogous to that 
given by Titchmarsh (1962, p. 125). 
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( b )  The contraction ratio of the j e t  
We conclude-this section by utilizing our outer solution to compute the final 
velocity W and the h a 1  width x of the jet. The non-dimensional momentum 
equation may be written in integral form as 

fi 

J c {p i i -  u,ui}njdl = 0, (4.27) 

where dl denotes a line element of the closed curve C, which we take to consist 
of the following arcs: (i) a line x = x1 < 0, 0 < z < 4 upstream,? (ii) a segment 

C-3P A - 

2.0 - 

1.6 - 

1.2 - 

X 

FIGURE 3. - , the pressure distribution on the line of symmetry with e = 0.1 (Reynolds 
number 1000) ; - - - -, case of infinite Reynolds number. 

x1 < x < 0, z = 0 of the lower wall, (iii) a segment 0 < x < x2,  z = [(x) of the 
lower free streamline, (iv) a line x = x2, [(xJ < z < 4 downstream, (v) the seg- 
ment x1 < x < x2, z = 4 of the centre line. We take thex-component of (4.27) and 
note that (iii) and (v) make no contribution; in the limit xz-+oo we obtain 

0 lo' {(P - 2s3$x2) + $~}lx=,ldz -1 e3$22 (x, 0 ) d x  - i W 2 x  = 0. (4.28) 
5 1  

But P(x,, Z) = e3{ - 4x1 + 113 (x, z ) }  + 0(e3), (4.29) 
and e3$22(x,0) = e 3 ~ 0 2 2 ( x ,  o ) + o ( @ )  = 2e3+0(€3); (4.30) 

does not satisfy the no-slip condition on z = 0, x < 0, there will be a boun- 
dary layer near there where our outer solution is not valid. However, this will not con- 
tribute to (4.27) in the approximation to which we work. 

i Since 
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there is thus a cancellation between the pressure - 4e3x1 of the basic Poiseuille 
flow and its integrated skin friction, leaving 

It 
i W 2 x  = s {c3H3 - 2e3$kze + $kf)l.=,,dz + o(c3). (4.31) 

Now let xl+ -m: by (4.25) 111,+0, also ~+$,. Hence? 

&w2x = 4(2 -Z2)2dZ+0(63)  

(4.32) 

1: 
= + o(e3). 

We also have from conservation of mass 

Wx=' 3' 
and hence we obtain the results 

1 x = Q+o(e3),  

W = f+o(c3).  

(4.33) 

(4.34) 

The O(1) terms here are the two-dimensional analogues of the results obtaine 
by Harmon (1955), which are now seen to be correct in the limit of high Reynolds 
number; in fact they are correct to order c3. 

5. The matching process and the determination of h(x) 
We adopt the matching rule employed by Van Dyke (1964) : 

Hrn En 31. = E n  H m  $7 (5.1) 

where m, n are any integers. Here En denotes the (n+ 1)-term outer-expansion 
operator defined precisely by Fraenkel (1968); for our purposes we may take it 
to mean the operation: express in terms of the outer variables and truncate 
immediately after the term of order en. H, is the corresponding inner-expansion 
operator. It must be emphasized that for successful application of the matching 
rule (5.1) the stretching transformation between the inner and outer variables 
must be in the canonical form y = €7; thus the outer expansions must be written 
in terms of y, not x as in $4. If this precaution is not taken, (5.1) can be satisfied 
only approximately, and indeed in the higher-order matchings it cannot be satis- 
fied at all; we require that the two expressions in (5.1) be exactly the same, for 
all m, n. We use the symbol En to denote outer expansions written in terms of z. 
Thus 

= (y + sh)2- ;(y + €h)3, 

H2E,$ = $82 = Y .  2 

(5.2) 

E,$ == y2-&3 = e272-2€3 3 7 ,  3 (5 .3 )  

(5.4) 

t The result (4.32) can also be obtained without letting x1 + -a as follows: 

also - 2 ~ g @ , ~  = 0(e3). 
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Thus (5.1) with m = 2, n = 0 gives the condition (3.12) for Y?,([,q). The asymp- 
totic behaviour of Y,, 

Y, N !g(q/@ + c)2 = (€-ly+ CX+)2, (5 .5 )  

shows that E,H& = E0(e2Y2)  = y2 (5.6) 
as required.t 

Similarly, taking m = 3, n = 0, we obtain the condition (3.22) for Y3(&q), 
and the asymptotic expansion for Y3 confirms that (5.1) is satisfied in this case 
also. 

Next we consider (5.1) with m = 2, n = 1; logically this ought perhaps to 
have been done before finding Y3 (5, v), but since +l (x, z )  turns out to be identi- 
cally zero this is unimportant. We have 

3111. = (y + Eh), -$(y + €h)3 + €ll.l (x, y + Eh), 

El 11. = Y2 - %Y3 + 411.1 (x, Y) + 2(Y - Y2) h, W}, 
H2E111. = 4 1  ( x , O )  + C 2 b 2  + 711.1, (x, 0) + 27% (41 

= Y2 + 411.1 (x, 0) + Y h  (x, 0) + 2YhO @,>, 
ElH.  11. = El (e2Y2) = y2 + 2 ~ ~ ~ x 4 .  

(5.7) 

(5.8) 

(5.9) 
In  this case (5.1) gives us the boundary condition +l(x, 0) = 0;  the problem for 
$l(x, z )  is now seen to be just the problem considered in $ 4  in the case h = 0, 
and the solution is identically zero. The remaining terms in (5.8) and (5.9) then 
yield the result h,(x) = cx) for the displacement of the free streamline, that is, 

<(x) = 0 . 7 0 7 9 8 ~ ~ 5  + O(e2).  (5.10) 

The first term in our outer expansion for 6 thus agrees in form with the result 
obtained by Goren (1966); the coefficient agrees to within 1 %. 

The vanishing of 11.1 (x, z )  means that to order e there is no interaction between 
the boundary layer and the outer flow: there is nothing analogous to the ‘dis- 
placement effect ’ found in the case of flow along a rigid boundary. So the assump- 
tion made at  the outset by Goren (1966) is justified. We can view this result as 
follows. Modifications to the outer flow are forced by the last term in (5.9): it  
is this that gives rise to the displacement effect in the solid-wall case. The 
difference between our case and that of a rigid boundary is that the term in 
question in (5.9) includes a streamwise velocity, while in the rigid-wall case the 
corresponding velocity is purely across the stream. It is to be expected physically 
that such a streamwise component of velocity cannot be dealt with by an 
essentially inviscid perturbation of the basic flow; instead the free surface 
adjusts itself so that the gain in flux due to speeding-up of the fluid in the 
boundary layer is cancelled by contraction of the jet. 

The form of h,(x) obtained also ensures that (5.1) is satisfied for m = 3, n = 1. 
The next step is to determine $, (x, x )  and hl (x) by considerations analogous to 
the above. We will not record the details here; the expressions for E3H3$ and 
H3E3$ given in appendix B serve as a check on the matching. The conclusion is 
that $2 vanishes identically and h, (x) = +B3x%, that is, 

<(x) = 0 . 7 0 7 9 8 d  - 1*04457e2x5 + O(e3). (5.11) 

while by (5.5) 

t We may note in passing that g O H 2 $  = z2,  which is not identical with 
H 2 1 ? o ~  = ~ ~ ( ~ + h , , ) 2 .  
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To obtain the boundary condition for sIr3(x, x ) ,  (5.1) is applied with m = n = 3. 
This yields $3 (x, 0) = 2x, so for the first time we have a non-trivial outer problem. 
To find h, (5) we must advance to m = 4 ;  this is done in 0 7. 

6. The composite expansion 

defined by 

This expression may be expected to provide a uniform approximation to order 
en over the whole width of the jet; we shall apply it to a discussion of the overall 
momentum balance in the jet. 

Again following Van Dyke (1964) ,  we introduce the ‘composite expansion’ 

cn$ = (Em+Hm-EnHn)$. (6.1) 

FIGURE 4. Velocity profiles based on the composite expansion. ( B  = 0.1, 
Reynolds number 1000.) 

From (B 1) and (B 3) we have 

c3$ = &df, (8)  + e3xf3 (e)  - 2@ph1 + €3{2(y - y2) h, - 4yh,)h1+ $3 (x, y) - 2 4 .  

(6 .2 )  

However, for our purposes it is more convenient to write this in terms of z 
rather than y :  

c3$ = &df, (e)  + .3x.f3 (8) - 2&2h, + ~3{2(2  - 22) h, + $3 (x, X )  - BX} + 0 ( ~ 4 ) ,  

where O(e4) denotes terms uniformly of the order indicated, because the meaning 
of 8 has not been changed, and the 0-term comes only from the third and sub- 
sequent terms of (6 .2 ) .  A similar expression may be written down for the velocity 
u = $s; working to second order only this is 

C,U = &$ (6) + ~z&f; (e)  - 2 ~ 2 2 3 ~ ~ x 8  + o(~3). (6 .3)  

Velocity profiles based on this expression are shown in figure 4 .  

integral (4.27) along the path (iv) (without letting x,-+co). This is 
As a valuable check on our procedures we shall calculate the momentum 
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M = M, + e3M3 + o ( E ~ ) .  
and we may expand it as 

We have c3p = p3 (x, 2) + ~ ( € 4 ) ~  

C3$f = 4(Z - Z')'+ 4e3(2 - Z') $Sz 

+ E'x*{f;'(0) - 4(0 + c)'} 

+ o(S4).  

+ 2e3x{ fi' (0)f; (0) + 4(0 + c ) ~  - 2B3 (0 + c)} 
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These expressions give 

and 

The first term here is to account for the fact that the integration starts at z = C, 
not z = 0. The first and last terms in (6.9) may be integrated at  once to give 
- $c3x and (2 + $c3) x, respectively; to calculate the second term we note that 

= -2x. 

Therefore M3 vanishes, and momentum balance is satisfied. 

7. The higher -order boundary layer 
The expression (4.15) gives us, for x > 0 ,  

p 3 ( x , x )  = 2xV,(z)+ C An -e-8nxwn(z), 
n=l Pn 

and hence 

H4 E3 $ = H3 E3 $ - 2e2y2h1 

(6.11) 

m 

- 4yh0h, - 4xy + 2yh2 - 4xy In y + y C A, e-pnx] . (7.2) 
n=1 Pfi 

The normalizing condition zu; (0)  = 1 has been used here. This gives us the boun- 
dary condition on Y4(g,7) for ~ + c o .  It should be noted, however, that the 
expression (7.2) when written in terms of the inner variable 7 contains a term in 
e41ne as well as one in e4. Therefore we must expect that from now on our ex- 
pansions for $ and h will include terms in E " I ~ E  as well as E ~ .  Experience with 
singular-perturbation problems has shown that in these circumstances it is not 
generally possible to achieve a match if the term in E" In E is treated as a separate 
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term in the expansion; instead the en and en In E: terms must be taken together. 
The theoretical basis for this is discussed by Fraenkel (1968) .  

It turns out that a logarithmic term is needed in the expansion for h, but not, 
at  this stage at  any rate, in the inner expansion for $. Proceeding then with the 
latter expansion, the equation for Y4([,Ir) is, from ( 3 . 2 ) ,  

y4qt]q fY2:Y4q7 + Y21fq'r45 -'r2q'r45q -Y2[vy4v = + G, ( 7 . 3 )  

where 3 = ~ 3 9 Y 3 5 1 I , - - 3 5 y 3 q T '  

G = p 4 ~ - h ~ p 4 q - ~ 2 g ~ ,  +ho"Y2,,+2h;Y2Sall-h;'Y2,,,. 

We must now evaluate F and G in terms of fz  and f 3 ;  this is done in appendix C. 
The expressions obtained there lead us to write Y4 ([, 7) in the form 

y4 ($,r)  = x'f4a (@) + X-'f4b (8)-  

f2; +#fif4'E,-+filfia + $ f l f 4 a  = + f i 2 - f 3 f 1 7  

f:; ++ f2 f& +Zf' 3 2 4 b  f '  -2 3 f"f 2 4 b - 9 .  - 

Y,,, = 2h;Y2, ,  - h;Y2,. 

(7 .4 )  

(7 .5 )  

(7 .6 )  

(7 .7 )  

f,, (8) and f 4 b  (8 )  then satisfy 

The boundary conditions at  = 0 are, from (3 .7 )  and (3.9), Y, = 0 and 

In terms of f,, and f 4 b  these become 

f4,(0) = f a 3  = 09 

f 4 b  ( O )  = O ,  f l b  (0) = $cfL(o)* (7 .8 )  

The asymptotic behaviour of the right-hand side of ( 7 . 5 )  for large 8, or large 
t = 8 + c,  is given by 

g p - - f 3 f ;  +B3tz+ 8t ++B; + 0 ( ~ - 3 ~ ) ) .  ( 7 . 9 )  

Direct substitution in (7 .5 )  gives us a particular integral whose asymptotic 
form is 

To find the asymptotic behaviour of faa(8) ,  we must add to this expression the 
asymptotic solution of the homogeneous equation corresponding to (7 .5 ) ;  this 
is 

A,, ( t 4  + 1% In t )  + B4,t + O(e-+"), 

where A4,, B4= are arbitrary constants. We take A,, = 0 and choose B,, and 
the third arbitrary constant in the exponential term so as to satisfy the boundary 
conditions (7 .8 ) .  The choice of A,, is dictated by the form of (7 .2 ) .  We thus arrive 
at 

(7 .10 )  

- B3t2 - 4t In t + + O ( t F ) .  

f,, N - B,t2-- 4t In t + B4,t + + O ( P ) .  

The corresponding results for ( 7 . 6 )  are 

9 Afr: (0) + 0(e-%t3)) ,  (7 .11 )  

giving asymptotically a particular integral 
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and complementary function 

A 4 b ( t - 2 + O ( t - 5 ) ) + B 4 b t +  O(e+).  

The two conditions (7.8) must be satisfied, but it is not clear what the third 
boundary condition should be. Probably A,, will be related by a higher-order 
matching to the arbitrary constants multiplying the eigensolutions discussed 
in $8; the indeterminacy reflects our ignorance of conditions in the neighbour- 
hood of x = 0. We have, in any case 

f4b N 234, t - + fi (0) + O(t-,). (7.12) 

The asymptotic behaviour we have found for Y, (c, 7) gives 

E,  H4 $ = E,  H, $ - s2B, X%J' - 2GB, CXY 

- 4s3xy(ln y - In E - Q In x) 

+ E ~ Y ( B ~ , x  + B 4 b X - 1 ) .  (7.13j) 

Comparison with (7 .2 )  shows that the matching is accomplished provided that 

h, ( X) = (2 + QB4,) x + 3. In x + &B4b X-' 

(7.14) 

As mentioned earlier, h now contains a term logarithmic in E .  The presence of a 
term in x-l indicates that, as expected, our solution breaks down for small x 
as well as for large x. 

It has not been thought worth while to discuss here the fifth-order terms, 
although no difficulties of principle arise. 

8. Eigensolutions 

CD,(<,r) = g-Am g(0) satisfying 
An eigensolution of the inner problem is here defined to be a function 

(8.1) 1 g" + +fig'' + A, f;. g' - A, f; g = 0, 

g(0)  = g"(0) = 0, 

g = A t + O ( e - q  as t = 0+c-+co, 

where A is a constant. Any multiple of such a function CD, ([, 7) may be intro- 
duced at any stage into the inner expansion without disturbing the equation of 
motion or the boundary conditions on 7 = 0. The asymptotic behaviour g N At 
is permitted since the corresponding matching can always be accomplished by a 
suitable adjustment to the free surface h(x). 

The indeterminacy that results from the possibility of eigensolutions entering 
is due physically to the existence of a region between the point where the jet 
leaves the wall of the channel and the point where our boundary-layer solution 
becomes valid, where the flow can only be described by the full Navier-Stokes 
equations, and the nature of the solution is unknown. A similar indeterminacy 
occurs in the higher-order theory of the boundary layer in the flow past a flat. 
plate (Goldstein 1960); there the details of the flow near the leading edge of the 
plate are unknown. 

19 Fluid Mech. 32 
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Stewartson (1957) showed that in the flat-plate case there is an infinite number 
of such eigensolutions, and in our case similar arguments lead to the same con- 
clusion. The simplest eigensolution, which is the least singular as x-+ 0 with 71 
fixed, is 

(Dl (L  71) = x-qf2 (8) - $of; (8)). (8.2) 

This eigensolution corresponds to an uncertainty in the starting point of the 
boundary layer. Since, to lowest order, g‘(x) = +cex-*, an uncertainty Ax in the 
starting point gives rise to an uncertainty A[ N +ccx-sAx in c; the contribution to 
6 of a term c ~ @ ~  ((, 7) in $ is ~ ~ ~ - 1 x - s .  

Now the boundary-layer thickness 6 a t  the point x is of order ex$; boundary- 
layer theory neglects viscous forces arising from velocity gradients in the 
x-direction, and so must be expected to break down when x and 6 are of the 
same order, i.e. when x = O(sQ). Note that in this region cf(x) = O(l) ,  as might 
have been expected. 

We anticipate, therefore, an uncertainty Ax = O(&), giving A{ = O(&x-8). 
So we expect the eigensolution Q1 (c, 7) not to enter the inner expansion before 
order K = g. This is consistent with the fact that our solution contains an in- 
determinacy in ’€”,, but not earlier. 

Appendix A 

differential equations that have arisen. In  the equation for f 2  (0) ,  
Here we give some details of the asymptotic solutions of the various ordinary 

f; + $ f2 f; - &fi’2 = 0, 

f2 ( t )  = a t 2  + g V ) ,  

(A 1)  

we set t = O + c, where c is as yet arbitrary, and 

(A 2) 

where a is a constant. The function a t 2  satisfies (A l), but not the boundary 
conditions associated with it; g ( t )  represents the error arising from these, which 
we expect to be small for large t .  (A 1) becomes 

9”’ + gat2g” - +atg’ + +ag = 0, (A 3 )  

where terms quadratic in g have been omitted. A plausible procedure is now to 
find a solution to (A 3 )  which is o ( t 2 ) ,  and such that the neglected terms are 
o( 1);  such a solution will then give an approximate solution to the full equation 
for g ,  and hence an asymptotic solution for f2. 

Two solutions of (A 3) are g = t and g = t 2 ;  to find a third, let g ( t )  = th(t). 
Then 

which has solution 
h” + (3 t -1+ ga t2 )  h” = 0, (A 4) 

(A 5) hlf = Ct-3e+als 

so that the general solution of (A 3) is 
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In this we take A = B = 0, giving an asymptotic solution of (A 1) 

which contains three arbitrary constants a, c and C which we choose in the manner 
described in $3. 

The equation for f3(8) ,  
f: + 2 2 R  - f X  + f l f 3  = 07 (A 8) 

is satisfied by f i ,  so we write 

and then p ,  ( t )  satisfies 
f 3  ( t )  = f ; :  (4 P3 ( t ) ,  

This equation is linear, and so can be discussed rigorously, e.g. by the methods 
described by Jeffreys (1962): the details will not be given here since the method 
is standard. The same method may be used for fda(8)  and f4a(8). 

Appendix B 

of $ 5 .  We have 
We record here the details of the matching with m = n = 3, used at the end 

E, $b = y2 - 3y3 + 2e(y - 92) h,, 

+ e2{2(y - y2) h, + (1 - 2y) hi} 

+e3{2(y-g2)h2f2(l - 2 y ) h , h , - ~ h ~ + f 3 ( x , y ) ) ,  (B 1) 

+ e3{ - +h: + 2h,hl + f3 (x, O)} ,  (B 2 )  
E3H3@ = Y ~ - $ ~ ~ + ~ c ( ~ - ~ ~ ) c x ) + E ~ { ( ~  - 2 y ) c 2 x 3 + B 3 x f y }  

H3E3 f = y2 - $y3 + 2€(y - y2) h, + e2{2yh1 + (1 - 2y) hi} 

+ 83( - 3e3x + B, ex + 32). (B 3) 

(B 4) 

In deriving (B 3) the asymptotic expansion for y -+ 00, 

Y, - - +(e-ly + cx.93 + B,xf(s-ly + c24) + 2x, 
has been used. Comparison of (B 2) and (B 3) yields $3(x ,  0) = 22. 

Appendix C 

Y3 from (3.23) gives 

To find the corresponding expression for G we must first calculate the pressure; 
this is found from (3.3), together with the boundary condition (3.8). These give 

Pd7 ( 6 , ~ )  = - +-'{4f2f; - t ( f i 2  + S f 2 f l  + 3 f 9  

- -2-371 - (4f:-2tfifil-3tfi"+3fJ, 

Here we evaluate the F and G of (7.3) in terms of f2 and f3. Substituting for 

F = g $ ( g f ; 2 - f 3 f j : ) .  (C 1) 

(C 2 )  
d 

2 7  do  
- 

19-2 
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where t = 8 + e, and 

Hence 

This gives G = x-*g(O), where 

P4(<,0) = -gx-y;(o). (C 3) 

(C 4) P4 (t, 7) = - &x-q4f; - 2tf& - 3t& - 3f;) - +x-+&(o). 
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